114
Bioinformatics of the Brain
[214] M. Lim, Y. Xia, and C. Bettegowda et al., “Current state of immunother-
apy for glioblastoma,” Nature Reviews Clinical Oncology, vol. 15, no. 7,
pp. 422–442, 2018.
[215] J. Huang, M. Zheng, and Z. Zhang et al., “Interleukin-7-loaded oncolytic
adenovirus improves CAR-T cell therapy for glioblastoma,” Cancer Im-
munology, Immunotherapy, vol. 70, pp. 2453–2465, 2021.
[216] J. M. Heffernan, J. B. McNamara, and S. Borwege et al., “PNIPAAm-
co-Jeffamine® (PNJ) scaffolds as in vitro models for niche enrichment of
glioblastoma stem-like cells,” Biomaterials, vol. 143, pp. 149–158, 2017.
[217] A. Clavreul, G. Soulard, and J.-M. Lemée et al., “The French glioblas-
toma biobank (FGB): a national clinicobiological database,” Journal of
Translational Medicine, vol. 17, no. 1, p. 133, 2019.
[218] L. Annaratone, G. De Palma, and G. Bonizzi et al., “Basic principles of
biobanking: from biological samples to precision medicine for patients,”
Virchows Archiv, vol. 479, pp. 233–246, 2021.
[219] L. Wang, J. Jung, and H. Babikir et al., “A single-cell atlas of glioblas-
toma evolution under therapy reveals cell-intrinsic and cell-extrinsic
therapeutic targets,” Nature Cancer, vol. 3, no. 12, pp. 1534–1552, 2022.
[220] P. Johansson, C. Krona, and S. Kundu et al., “A patient-derived cell
atlas informs precision targeting of glioblastoma,” Cell Reports, vol. 32,
no. 2, p. 107897, 2020.
[221] A. Clavreul, L. Autier, and J.-M. Lemée et al., “Management of re-
current glioblastomas: what can we learn from the French glioblastoma
biobank?,” Cancers, vol. 14, no. 22, p. 5510, 2022.
[222] A. C. Fuentes-Fayos, M. E. G-García, and J. M. Pérez-Gómez et
al., “Metformin and simvastatin exert additive antitumour effects in
glioblastoma via senescence-state: clinical and translational evidence,”
EBioMedicine, vol. 90, p. 104484, 2023.